実行環境
## R version 4.4.0 (2024-04-24 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 22621)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=Japanese_Japan.utf8 LC_CTYPE=Japanese_Japan.utf8
## [3] LC_MONETARY=Japanese_Japan.utf8 LC_NUMERIC=C
## [5] LC_TIME=Japanese_Japan.utf8
##
## time zone: Asia/Tokyo
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] aninet_0.2.0.0 vegan_2.6-6.1 lattice_0.22-6
## [4] permute_0.9-7 systemfonts_1.1.0 extrafont_0.19
## [7] concaveman_1.1.0 ggforce_0.4.2 ggdag_0.2.12
## [10] dagitty_0.3-4 kableExtra_1.4.0 knitr_1.46
## [13] DT_0.33 patchwork_1.2.0 data.table_1.15.4
## [16] see_0.8.4 report_0.5.8 parameters_0.21.7
## [19] performance_0.11.0 modelbased_0.8.7 insight_0.19.11
## [22] effectsize_0.8.8 datawizard_0.10.0 correlation_0.8.4
## [25] bayestestR_0.13.2 easystats_0.7.1 hwig_0.0.2
## [28] assortnet_0.20 clValid_0.7 cluster_2.1.6
## [31] igraph_2.0.3 ANTs_0.0.16 sna_2.7-2
## [34] network_1.18.2 statnet.common_4.9.0 asnipe_1.1.17
## [37] ggraph_2.2.1 tidygraph_1.3.1 ggsci_3.1.0
## [40] lemon_0.4.9 lubridate_1.9.3 forcats_1.0.0
## [43] stringr_1.5.1 dplyr_1.1.4 purrr_1.0.2
## [46] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
## [49] ggplot2_3.5.1 tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
## [1] rstudioapi_0.16.0 jsonlite_1.8.8 magrittr_2.0.3 TH.data_1.1-2
## [5] estimability_1.5.1 farver_2.1.2 nloptr_2.0.3 rmarkdown_2.27
## [9] vctrs_0.6.5 memoise_2.0.1 minqa_1.2.7 htmltools_0.5.8.1
## [13] curl_5.2.1 sass_0.4.9 bslib_0.7.0 htmlwidgets_1.6.4
## [17] plyr_1.8.9 sandwich_3.1-0 emmeans_1.10.2 zoo_1.8-12
## [21] cachem_1.1.0 lifecycle_1.0.4 pkgconfig_2.0.3 Matrix_1.7-0
## [25] R6_2.5.1 fastmap_1.2.0 digest_0.6.35 colorspace_2.1-0
## [29] crosstalk_1.2.1 fansi_1.0.6 timechange_0.3.0 mgcv_1.9-1
## [33] polyclip_1.10-6 compiler_4.4.0 bit64_4.0.5 withr_3.0.0
## [37] viridis_0.6.5 highr_0.10 Rttf2pt1_1.3.12 MASS_7.3-60.2
## [41] gtools_3.9.5 tools_4.4.0 extrafontdb_1.0 glue_1.7.0
## [45] nlme_3.1-164 grid_4.4.0 generics_0.1.3 gtable_0.3.5
## [49] tzdb_0.4.0 class_7.3-22 hms_1.1.3 xml2_1.3.6
## [53] utf8_1.2.4 ggrepel_0.9.5 pillar_1.9.0 vroom_1.6.5
## [57] splines_4.4.0 Kendall_2.2.1 tweenr_2.0.3 bit_4.0.5
## [61] survival_3.6-4 tidyselect_1.2.1 gridExtra_2.3 V8_4.4.2
## [65] bookdown_0.39 svglite_2.1.3 xfun_0.44 graphlayouts_1.1.1
## [69] stringi_1.8.4 yaml_2.3.8 boot_1.3-30 evaluate_0.23
## [73] codetools_0.2-20 archive_1.1.8 cli_3.6.2 xtable_1.8-4
## [77] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.12 coda_0.19-4.1
## [81] parallel_4.4.0 lme4_1.1-35.3 viridisLite_0.4.2 mvtnorm_1.2-5
## [85] scales_1.3.0 crayon_1.5.2 rlang_1.1.3 multcomp_1.4-25
References
Balasubramaniam, K. N., Beisner, B. A., Berman, C. M., De Marco, A., Duboscq, J., Koirala, S., Majolo, B., Macintosh, A. J. J. J., McFarland, R., Molesti, S., Ogawa, H., Petit, O., Schino, G., Sosa, S., Sueur, C., Thierry, B., Waal, F. B. M. M. de, & McCowan, B. (2018). The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. Am. J. Primatol., 80(1), e22727.
Bejder, L., Fletcher, D., & BrÄger, S. (1998). A method for testing association patterns of social animals. Anim. Behav., 56(3), 719–725.
Borgatti, S. P., Everett, M. G., Johnson, J. C., & Agneessens, F. (2022). Analyzing social networks using R. SAGE.
Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. J. Stat. Softw., 25, 1–22.
Butts, C. T. (2008). Social network analysis with sna. J. Stat. Softw., 24, 1–51.
Campbell, L. A. D., Tkaczynski, P. J., Lehmann, J., Mouna, M., & Majolo, B. (2018). Social thermoregulation as a potential mechanism linking sociality and fitness: Barbary macaques with more social partners form larger huddles. Sci. Rep., 8(1), 6074.
Canteloup, C., Hoppitt, W., & Waal, E. van de. (2020). Wild primates copy higher-ranked individuals in a social transmission experiment. Nat. Commun., 11(1), 459.
Chang, W. (2018). R graphics cookbook: Practical recipes for visualizing data. “O’Reilly Media, Inc.”
Cheney, D. L., Silk, J. B., & Seyfarth, R. M. (2016). Network connections, dyadic bonds and fitness in wild female baboons. Royal Society Open Science, 3(7), 160255.
Croft, D. P., Madden, J. R., Franks, D. W., & James, R. (2011). Hypothesis testing in animal social networks. Trends in Ecology and Evolution, 26(10), 502–507.
Croft, D., James, R., & Krause, J. (2008). 動物の社会ネットワーク分析 (島田将喜., Trans.). 東海大学出版部.
Csardi, G., Nepusz, T., & Others. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.
Dekker, D., Krackhardt, D., & Snijders, T. A. B. (2007). Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika, 72(4), 563–581.
Duboscq, J., Romano, V., Sueur, C., & Macintosh, A. J. J. (2016). Network centrality and seasonality interact to predict lice load in a social primate. Sci. Rep., 6(FEBRUARY), 22095.
Dunn, P. K., & Smyth, G. K. (2018). Generalized linear models with examples in R. Springer New York.
Evans, J. C., Fisher, D. N., & Silk, M. J. (2020). The performance of permutations and exponential random graph models when analyzing animal networks. Behav. Ecol., 31(5), 1266–1276.
Farine, D. R. (2013). Animal social network inference and permutations for ecologists inRusingasnipe. Methods Ecol. Evol., 4(12), 1187–1194.
Farine, D. R. (2014). Measuring phenotypic assortment in animal social networks: Weighted associations are more robust than binary edges. Anim. Behav., 89, 141–153.
Farine, D. R. (2017). A guide to null models for animal social network analysis. Methods Ecol. Evol., 8(10), 1309–1320.
Farine, D. R., & Carter, G. G. (2022). Permutation tests for hypothesis testing with animal social network data: Problems and potential solutions. Methods Ecol. Evol., 13(1), 144–156.
Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol., 84(5), 1144–1163.
Franks, D. W., Weiss, M. N., Silk, M. J., Perryman, R. J. Y., & Croft, D. P. (2021). Calculating effect sizes in animal social network analysis. Methods Ecol. Evol., 12(1), 33–41.
Franz, M., & Nunn, C. L. (2009). Network-based diffusion analysis: A new method for detecting social learning. Proc. Biol. Sci., 276(1663), 1829–1836.
Galef, B. G., & Laland, K. N. (2005). Social learning in animals: Empirical studies and theoretical models. Bioscience, 55(6), 489–499.
Gilby, I. C., Brent, L. J. N., Wroblewski, E. E., Rudicell, R. S., Hahn, B. H., Goodall, J., & Pusey, A. E. (2013). Fitness benefits of coalitionary aggression in male chimpanzees. Behav. Ecol. Sociobiol., 67(3), 373–381.
Godde, S., Humbert, L., Côté, S. D., Réale, D., & Whitehead, H. (2013). Correcting for the impact of gregariousness in social network analyses. Anim. Behav., 85(3), 553–558.
Hart, J. D. A., Weiss, M. N., Brent, L. J. N., & Franks, D. W. (2022). Common permutation methods in animal social network analysis do not control for non-independence. Behav. Ecol. Sociobiol., 76(11), 151.
Hasenjager, M. J., Leadbeater, E., & Hoppitt, W. (2021). Detecting and quantifying social transmission using network-based diffusion analysis. J. Anim. Ecol., 90(1), 8–26.
Hemelrijk, C. K. (1990a). A matrix partial correlation test used in investigations of reciprocity and other social interaction patterns at group level. J. Theor. Biol., 143(3), 405–420.
Hemelrijk, C. K. (1990b). Models of, and tests for, reciprocity, unidirectionality and other social interaction patterns at a group level. Anim. Behav., 39(6), 1013–1029.
Henrich, J. (2015). The secret of our success. Princeton University Press.
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366.
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W., & Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biol., 12(9), e1001960.
Hoppitt, W. (2017). The conceptual foundations of network-based diffusion analysis: Choosing networks and interpreting results. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372(1735).
Hoppitt, W. J. E., & Farine, D. R. (2018). Association indices for quantifying social relationships: How to deal with missing observations of individuals or groups. Anim. Behav., 136, 227–238.
Hoppitt, W., Boogert, N. J., & Laland, K. N. (2010). Detecting social transmission in networks. J. Theor. Biol., 263(4), 544–555.
Hoppitt, W., & Laland, K. N. (2011). Detecting social learning using networks: A users guide. Am. J. Primatol., 73(8), 834–844.
Hoppitt, W., Photopoulou, T., Hasenjager, M., & Leadbeater, E. (2020). NBDA: A package for implementing network-based diffusion analysis. https://github.com/whoppitt/NBDA
Kawazoe, T., & Sosa, S. (2019). Social networks predict immigration success in wild japanese macaques. Primates, 60(3), 213–222.
Krause, J., James, R., Franks, D. W., & Croft, D. P. (2015). Animal social networks. Oxford University Press.
Kulahci, I. G., Rubenstein, D. I., Bugnyar, T., Hoppitt, W., Mikus, N., & Schwab, C. (2016). Social networks predict selective observation and information spread in ravens. R Soc Open Sci, 3(7), 160256.
Laland, K. N., & Janik, V. M. (2006). The animal cultures debate. Trends Ecol. Evol., 21(10), 542–547.
Lehmann, J., Majolo, B., & McFarland, R. (2016). The effects of social network position on the survival of wild barbary macaques, macaca sylvanus. Behav. Ecol., 27(1), 20–28.
MacIntosh, A. J. J., Jacobs, A., Garcia, C., Shimizu, K., Mouri, K., Huffman, M. A., & Hernandez, A. D. (2012). Monkeys in the middle: Parasite transmission through the social network of a wild primate. PLoS One, 7(12), 15–21.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res., 27(2), 209–220.
Nakagawa, N., Matsubara, M., Shimooka, Y., & Nishikawa, M. (2015). Embracing in a wild group of yakushima macaques ( macaca fuscata yakui ) as an example of social customs. Curr. Anthropol., 56(1), 104–120.
Newman, M. E. J. (2004). Analysis of weighted networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 70(5 Pt 2), 056131.
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.
Perry, S., Baker, M., Fedigan, L., Gros-Louis, J., Jack, K., MacKinnon, K. C., Manson, J. H., Panger, M., Pyle, K., & Rose, L. (2003). Social conventions in wild white‐faced capuchin monkeys. Curr. Anthropol., 44(2), 241–268.
Puga-Gonzalez, I., Sosa, S., & Sueur, C. (2019). Editorial: Social networks analyses in primates, a multilevel perspective. Primates, 60, 163–165.
Puga‐Gonzalez, I., Sueur, C., & Sosa, S. (2021). Null models for animal social network analysis and data collected via focal sampling: Pre‐network or node network permutation? Methods Ecol. Evol., 12(1), 22–32.
Schaik, C. P. van, Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., Suzuki, A., Utami, S. S., & Merrill, M. (2003). Orangutan cultures and the evolution of material culture. Science, 299(5603), 102–105.
Shimada, M., & Sueur, C. (2018). Social play among juvenile wild japanese macaques (macaca fuscata) strengthens their social bonds. Am. J. Primatol., 80(1).
Silk, J. B., Altmann, J., & Alberts, S. C. (2006). Social relationships among adult female baboons (papio cynocephalus) i. Variation in the strength of social bonds. Behav. Ecol. Sociobiol., 61(2), 183–195.
Sosa, S., Puga-Gonzalez, I., Hu, F., Pansanel, J., Xie, X., & Sueur, C. (2020). A multilevel statistical toolkit to study animal social networks: The animal network toolkit software (ANTs) R package. Sci. Rep., 10(1), 12507.
Sosa, S., Sueur, C., & Puga-Gonzalez, I. (2021). Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol., 12(1), 10–21.
Sueur, C., Jacobs, A., Amblard, F., Petit, O., & King, A. J. (2011). How can social network analysis improve the study of primate behavior? American Journal of Primatology, 73(8), 703–719.
Sueur, C., Petit, O., De Marco, A., Jacobs, A. T., Watanabe, K., & Thierry, B. (2011). A comparative network analysis of social style in macaques. Anim. Behav., 82(4), 845–852.
Weiss, M. N., Franks, D. W., Brent, L. J. N., Ellis, S., Silk, M. J., & Croft, D. P. (2021). Common datastream permutations of animal social network data are not appropriate for hypothesis testing using regression models. Methods Ecol. Evol., 12(2), 255–265.
Whitehead, H. (2008). Analyzing animal societies. The University of Chicago Press.
Whitehead, H., Bejder, L., & Ottensmeyer, C. A. (1999). Testing association patterns of social animals. Anim. Behav., 57(5), 26–29.
Whitehead, H., Bejder, L., & Ottensmeyer, C. A. (2005). Testing association patterns: Issues arising and extensions. Anim. Behav., 69(5), e1.
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E., Wrangham, R. W., & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399(6737), 682–685.
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. “O’Reilly Media, Inc.”
大東健太郎. (2010). 線形モデルから一般化線形モデル(GLM)へ. 雑草研究, 55(4), 268–274.
松村優哉., 湯谷啓明., 紀ノ定保礼., & 前田和. (2021). RユーザのためのRstudio[実践]入門 tidyverseによるモダンな分析フローの世界 改訂2版. 技術評論社.
鈴木努. (2017). R で学ぶデータサイエンス 8 ネットワーク分析 第2版 (金明哲., Ed.). 共立出版.