実行環境

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Japanese_Japan.utf8  LC_CTYPE=Japanese_Japan.utf8   
## [3] LC_MONETARY=Japanese_Japan.utf8 LC_NUMERIC=C                   
## [5] LC_TIME=Japanese_Japan.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] coxme_2.2-18.1     bdsmatrix_1.3-6    MASS_7.3-58.1      cmprsk_2.2-11     
##  [5] survminer_0.4.9    ggpubr_0.5.0       ggplotify_0.1.0    flextable_0.9.1   
##  [9] flexsurv_2.2.2     eha_2.10.3         ggeffects_1.1.4    rstanarm_2.21.4   
## [13] brms_2.18.0        Rcpp_1.0.9         fontregisterer_0.3 systemfonts_1.0.4 
## [17] extrafont_0.18     lemon_0.4.6        ggsci_2.9          stargazer_5.2.3   
## [21] kableExtra_1.3.4   knitr_1.42         DT_0.27            patchwork_1.1.2   
## [25] data.table_1.14.6  see_0.7.5.5        report_0.5.7.4     parameters_0.20.3 
## [29] performance_0.10.3 modelbased_0.8.6.3 insight_0.19.1.4   effectsize_0.8.3.6
## [33] datawizard_0.7.1.1 correlation_0.8.4  bayestestR_0.13.1  easystats_0.6.0.8 
## [37] haven_2.5.1        forcats_1.0.0      stringr_1.5.0      dplyr_1.1.2       
## [41] purrr_1.0.0        readr_2.1.3        tidyr_1.2.1        tibble_3.2.1      
## [45] tidyverse_1.3.2    ggplot2_3.4.2      ggsurvfit_0.3.0    survival_3.5-5    
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2              tidyselect_1.2.0        lme4_1.1-31            
##   [4] htmlwidgets_1.6.1       grid_4.2.2              munsell_0.5.0          
##   [7] ragg_1.2.4              codetools_0.2-18        statmod_1.5.0          
##  [10] miniUI_0.1.1.1          withr_2.5.0             Brobdingnag_1.2-9      
##  [13] colorspace_2.0-3        muhaz_1.2.6.4           uuid_1.1-0             
##  [16] rstudioapi_0.14         stats4_4.2.2            ggsignif_0.6.4         
##  [19] officer_0.6.2           Rttf2pt1_1.3.8          fontLiberation_0.1.0   
##  [22] bayesplot_1.10.0        emmeans_1.8.3           rstan_2.26.13          
##  [25] KMsurv_0.1-5            farver_2.1.1            bridgesampling_1.1-2   
##  [28] coda_0.19-4             vctrs_0.6.2             generics_0.1.3         
##  [31] xfun_0.36               timechange_0.1.1        fontquiver_0.2.1       
##  [34] R6_2.5.1                markdown_1.7            gridGraphics_0.5-1     
##  [37] cachem_1.0.6            assertthat_0.2.1        promises_1.2.0.1       
##  [40] scales_1.2.1            googlesheets4_1.0.1     gtable_0.3.3           
##  [43] processx_3.8.0          rlang_1.1.1             splines_4.2.2          
##  [46] rstatix_0.7.1           extrafontdb_1.0         gargle_1.2.1           
##  [49] broom_1.0.2             checkmate_2.1.0         inline_0.3.19          
##  [52] yaml_2.3.7              reshape2_1.4.4          abind_1.4-5            
##  [55] modelr_0.1.10           threejs_0.3.3           crosstalk_1.2.0        
##  [58] backports_1.4.1         httpuv_1.6.7            tensorA_0.36.2         
##  [61] tools_4.2.2             bookdown_0.31           ellipsis_0.3.2         
##  [64] jquerylib_0.1.4         posterior_1.3.1         plyr_1.8.8             
##  [67] base64enc_0.1-3         ps_1.7.2                prettyunits_1.1.1      
##  [70] openssl_2.0.5           deSolve_1.34            zoo_1.8-11             
##  [73] fs_1.5.2                crul_1.3                magrittr_2.0.3         
##  [76] colourpicker_1.2.0      reprex_2.0.2            googledrive_2.0.0      
##  [79] mvtnorm_1.1-3           matrixStats_0.63.0      hms_1.1.2              
##  [82] shinyjs_2.1.0           mime_0.12               evaluate_0.20          
##  [85] xtable_1.8-4            shinystan_2.6.0         readxl_1.4.1           
##  [88] gridExtra_2.3           rstantools_2.2.0        compiler_4.2.2         
##  [91] fontBitstreamVera_0.1.1 V8_4.2.2                crayon_1.5.2           
##  [94] minqa_1.2.5             StanHeaders_2.26.13     htmltools_0.5.4        
##  [97] later_1.3.0             tzdb_0.3.0              RcppParallel_5.1.6     
## [100] lubridate_1.9.0         DBI_1.1.3               dbplyr_2.2.1           
## [103] boot_1.3-28             car_3.1-1               Matrix_1.5-1           
## [106] cli_3.6.0               quadprog_1.5-8          parallel_4.2.2         
## [109] igraph_1.3.5            km.ci_0.5-6             pkgconfig_2.0.3        
## [112] numDeriv_2016.8-1.1     xml2_1.3.3              dygraphs_1.1.1.6       
## [115] svglite_2.1.1           bslib_0.4.2             webshot_0.5.4          
## [118] estimability_1.4.1      rvest_1.0.3             yulab.utils_0.0.6      
## [121] distributional_0.3.1    callr_3.7.3             digest_0.6.31          
## [124] httpcode_0.3.0          rmarkdown_2.20          cellranger_1.1.0       
## [127] survMisc_0.5.6          gdtools_0.3.3           curl_4.3.3             
## [130] shiny_1.7.4             gtools_3.9.4            nloptr_2.0.3           
## [133] lifecycle_1.0.3         nlme_3.1-160            jsonlite_1.8.4         
## [136] mstate_0.3.2            carData_3.0-5           askpass_1.1            
## [139] viridisLite_0.4.1       fansi_1.0.3             pillar_1.9.0           
## [142] lattice_0.20-45         loo_2.5.1               fastmap_1.1.0          
## [145] httr_1.4.4              pkgbuild_1.4.0          glue_1.6.2             
## [148] xts_0.12.2              zip_2.2.2               shinythemes_1.2.0      
## [151] stringi_1.7.8           sass_0.4.5              textshaping_0.3.6      
## [154] gfonts_0.2.0

References

Allison, P. D. (2014). Event history and survival analysis: Regression for longitudinal event data. SAGE Publications.
Broström, G. (2021). Event history analysis with R. CRC Press.
Chang, W. (2018). R graphics cookbook: Practical recipes for visualizing data. “O’Reilly Media, Inc.”
Cox, D. R. (1972). Regression models and life-tables. J. R. Stat. Soc., 34(2), 187–202.
Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L., & Brent, L. J. N. (2019). Deconstructing sociality: The types of social connections that predict longevity in a group-living primate. Proc. Biol. Sci., 286(1917), 20191991.
Rossi, P. H., Berk, R. A., & Lenihan, K. J. (1980). Money, work and crime: Some experimental results. New York: Academic Press.
Silk, J. B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R., Wittig, R. M., Seyfarth, R. M., & Cheney, D. L. (2010). Strong and consistent social bonds enhance the longevity of female baboons. Curr. Biol., 20(15), 1359–1361.
Swedell, L., Saunders, J., Schreier, A., Davis, B., Tesfaye, T., & Pines, M. (2011). Female “dispersal” in hamadryas baboons: Transfer among social units in a multilevel society. Am. J. Phys. Anthropol., 145(3), 360–370.
Thompson, N. A., & Cords, M. (2018). Stronger social bonds do not always predict greater longevity in a gregarious primate. Ecol. Evol., 8(3), 1604–1614.
Tung, J., Archie, E. A., Altmann, J., & Alberts, S. C. (2016). Cumulative early life adversity predicts longevity in wild baboons. Nat. Commun., 7.
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. “O’Reilly Media, Inc.”
アリソンポール=デイビット. (2021). イベント・ヒストリー分析 (福田亘孝., Trans.). 共立出版.
久保拓弥. (2012). データ解析のための統計モデリング入門. 岩波書店.
大東健太郎. (2010). 線形モデルから一般化線形モデル(GLM)へ. 雑草研究, 55(4), 268–274.
大橋靖雄., 浜田知久馬., & 魚住龍史. (2021). 生存時間解析 第2版 SASによる生物統計. 東京大学出版.
杉本知之. (2021). 生存時間解析. 朝倉書店.
松村優哉., 湯谷啓明., 紀ノ定保礼., & 前田和. (2021). RユーザのためのRstudio[実践]入門 tidyverseによるモダンな分析フローの世界 改訂2版. 技術評論社.
粕谷英一. (2012). 一般化線形モデル. 共立出版.