実行環境
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Japanese_Japan.utf8 LC_CTYPE=Japanese_Japan.utf8
## [3] LC_MONETARY=Japanese_Japan.utf8 LC_NUMERIC=C
## [5] LC_TIME=Japanese_Japan.utf8
##
## attached base packages:
## [1] parallel splines stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ggeffects_1.1.4 fontregisterer_0.3
## [3] systemfonts_1.0.4 extrafont_0.18
## [5] gganimate_1.0.8 lemon_0.4.6
## [7] ggsci_2.9 concaveman_1.1.0
## [9] ggforce_0.4.1 ggdag_0.2.7
## [11] dagitty_0.3-1 kableExtra_1.3.4
## [13] knitr_1.43 DT_0.27
## [15] patchwork_1.1.2 GGally_2.1.2
## [17] ggnewscale_0.4.9 htmlwidgets_1.6.2
## [19] plotly_4.10.1 sp_1.5-1
## [21] data.table_1.14.6 see_0.7.5.5
## [23] report_0.5.7.4 parameters_0.20.3
## [25] performance_0.10.3 modelbased_0.8.6.3
## [27] insight_0.19.1.4 effectsize_0.8.3.6
## [29] datawizard_0.7.1.1 correlation_0.8.4
## [31] bayestestR_0.13.1 easystats_0.6.0.8
## [33] forcats_1.0.0 stringr_1.5.0
## [35] dplyr_1.1.2 purrr_1.0.0
## [37] readr_2.1.3 tidyr_1.2.1
## [39] tibble_3.2.1 ggplot2_3.4.2
## [41] tidyverse_1.3.2 DHARMa.helpers_0.0.0.9000
## [43] DHARMa_0.4.6 cmdstanr_0.5.3
## [45] rstan_2.26.13 StanHeaders_2.26.13
## [47] brms_2.18.0 Rcpp_1.0.11
## [49] gstat_2.1-1 gratia_0.8.1.34
## [51] gamlss_5.4-12 gamlss.dist_6.0-5
## [53] MASS_7.3-58.1 gamlss.data_6.0-2
## [55] mgcv_1.8-41 nlme_3.1-160
##
## loaded via a namespace (and not attached):
## [1] estimability_1.4.1 spacetime_1.3-0 coda_0.19-4
## [4] intervals_0.15.4 bit64_4.0.5 dygraphs_1.1.1.6
## [7] inline_0.3.19 doParallel_1.0.17 generics_0.1.3
## [10] callr_3.7.3 mvnfast_0.2.8 bit_4.0.5
## [13] tzdb_0.3.0 webshot_0.5.4 xml2_1.3.3
## [16] lubridate_1.9.0 httpuv_1.6.7 assertthat_0.2.1
## [19] gargle_1.2.1 xfun_0.39 hms_1.1.3
## [22] jquerylib_0.1.4 bayesplot_1.10.0 evaluate_0.20
## [25] promises_1.2.0.1 fansi_1.0.3 progress_1.2.2
## [28] dbplyr_2.2.1 readxl_1.4.1 igraph_1.3.5
## [31] DBI_1.1.3 reshape_0.8.9 tensorA_0.36.2
## [34] googledrive_2.0.0 stats4_4.2.2 ellipsis_0.3.2
## [37] crosstalk_1.2.0 backports_1.4.1 V8_4.2.2
## [40] bookdown_0.34 markdown_1.7 RcppParallel_5.1.6
## [43] vctrs_0.6.2 abind_1.4-5 cachem_1.0.6
## [46] withr_2.5.0 checkmate_2.1.0 vroom_1.6.0
## [49] emmeans_1.8.3 xts_0.12.2 prettyunits_1.1.1
## [52] svglite_2.1.1 lazyeval_0.2.2 crayon_1.5.2
## [55] pkgconfig_2.0.3 labeling_0.4.2 tweenr_2.0.2
## [58] rlang_1.1.1 lifecycle_1.0.3 miniUI_0.1.1.1
## [61] colourpicker_1.2.0 extrafontdb_1.0 modelr_0.1.10
## [64] cellranger_1.1.0 distributional_0.3.2 polyclip_1.10-4
## [67] matrixStats_0.63.0 Matrix_1.5-1 loo_2.5.1
## [70] boot_1.3-28 zoo_1.8-11 reprex_2.0.2
## [73] base64enc_0.1-3 processx_3.8.0 googlesheets4_1.0.1
## [76] viridisLite_0.4.2 gap.datasets_0.0.5 shinystan_2.6.0
## [79] scales_1.2.1 magrittr_2.0.3 plyr_1.8.8
## [82] threejs_0.3.3 compiler_4.2.2 rstantools_2.2.0
## [85] RColorBrewer_1.1-3 lme4_1.1-31 cli_3.6.0
## [88] ps_1.7.2 Brobdingnag_1.2-9 tidyselect_1.2.0
## [91] stringi_1.7.8 highr_0.10 yaml_2.3.7
## [94] bridgesampling_1.1-2 grid_4.2.2 sass_0.4.5
## [97] tools_4.2.2 timechange_0.1.1 rstudioapi_0.15.0
## [100] foreach_1.5.2 gridExtra_2.3 posterior_1.3.1
## [103] farver_2.1.1 digest_0.6.31 FNN_1.1.3.2
## [106] shiny_1.7.4 qgam_1.3.4 broom_1.0.2
## [109] later_1.3.0 httr_1.4.4 colorspace_2.0-3
## [112] rvest_1.0.3 fs_1.5.2 shinythemes_1.2.0
## [115] xtable_1.8-4 jsonlite_1.8.4 nloptr_2.0.3
## [118] tidygraph_1.2.2 gap_1.4-2 R6_2.5.1
## [121] pillar_1.9.0 htmltools_0.5.4 mime_0.12
## [124] glue_1.6.2 fastmap_1.1.0 minqa_1.2.5
## [127] codetools_0.2-18 ggokabeito_0.1.0 pkgbuild_1.4.0
## [130] mvtnorm_1.1-3 utf8_1.2.2 lattice_0.20-45
## [133] bslib_0.4.2 curl_4.3.3 gtools_3.9.4
## [136] magick_2.7.4 shinyjs_2.1.0 Rttf2pt1_1.3.8
## [139] survival_3.5-5 rmarkdown_2.23 munsell_0.5.0
## [142] iterators_1.0.14 haven_2.5.1 reshape2_1.4.4
## [145] gtable_0.3.3
References
Bailey DM, Collins MA, Gordon JDM, et al (2009) Long-term changes in deep-water fish populations in the northeast atlantic: A deeper reaching effect of fisheries? Proc Biol Sci 276:1965–1969
Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35
Camphuysen CJ, Powell D Northern gannets in the north sea: Foraging distribution and feeding techniques around the bass rock
Chang W (2018) R graphics cookbook: Practical recipes for visualizing data. “O’Reilly Media, Inc.”
Dunn PK, Smyth GK (2018) Generalized linear models with examples in R. Springer New York
Hastie T, Hastie MT (2018) Package “gam.” GAM Package CRAN, cran r-project org/web/packages/gam/gam pdf
Heger A, Ieno EN, King NJ, et al (2008) Deep-sea pelagic bioluminescence over the Mid-Atlantic ridge. Deep Sea Res Part 2 Top Stud Oceanogr 55:126–136
Hongo S, Nakashima Y, Akomo-Okoue EF, Mindonga-Nguelet FL (2022) Seasonality in daily movement patterns of mandrills revealed by combining direct tracking and camera traps. J Mammal 103:159–168
James G, D W, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning with Applications in R. Springer
Matsumoto T (2017) Developmental changes in feeding behaviors of infant chimpanzees at mahale, tanzania: Implications for nutritional independence long before cessation of nipple contact. Am J Phys Anthropol 163:356–366
Pearce E, Dunbar R (2012) Latitudinal variation in light levels drives human visual system size. Biol Lett 8:90–93
Pinheiro J, Bates D (2000) Mixed-Effects models in S and S-PLUS. Springer Science & Business Media
Rigby RA, Stasinopoulos MD, Heller GZ, De Bastiani F (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R. CRC Press
Sardella NH, Timi JT (2004) Parasites of argentine hake in the argentine sea: Population and infracommunity structure as evidence for host stock discrimination. J Fish Biol 65:1472–1488
Taniguchi H, Matsumoto-Oda A (2018) Wound healing in wild male baboons: Estimating healing time from wound size. PLoS One 13:
Wickham H, Grolemund G (2016) R for data science: Import, tidy, transform, visualize, and model data. “O’Reilly Media, Inc.”
Wood S, EPSRC P funded by (2007) R mgcv-package
Wood SN (2017) Generalized additive models: An introduction with r, second edition. CRC Press
Zuur AF (2012) A beginner’s guide to generalized additive models with R. Highland Statistics, Newburgh, Scotland
Zuur AF (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NY
Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14
Zuur AF, Savaliev AA, Ieno EN (2012) Zero inflated models and generalized linear mixed models with R. Highland Statistics, Newburgh, Scotland
Zuur AF, Saveliev AA, Ieno EN (2014) A beginner’s guide to generalised additive mixed models with R. Highland Statistics, Newburgh, Scotland
久保拓弥 (2012) データ解析のための統計モデリング入門. 岩波書店
大東健太郎 (2010) 線形モデルから一般化線形モデル(GLM)へ. 雑草研究 55:268–274
松村優哉, 湯谷啓明, 紀ノ定保礼, 前田和 (2021) RユーザのためのRstudio[実践]入門 tidyverseによるモダンな分析フローの世界 改訂2版. 技術評論社
松浦健太郎 (2012) StanとRでベイズ統計モデリング. 共立出版
竹澤邦夫 (2009) Rによるノンパラメトリック回帰の入門講義. メタ・ブレーン
馬場真哉 (2015) 平均・分散から始める一般化線形モデル入門. プレアデス出版