実行環境

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Japanese_Japan.utf8  LC_CTYPE=Japanese_Japan.utf8   
## [3] LC_MONETARY=Japanese_Japan.utf8 LC_NUMERIC=C                   
## [5] LC_TIME=Japanese_Japan.utf8    
## 
## attached base packages:
## [1] parallel  stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] rstan_2.32.3              StanHeaders_2.26.28      
##  [3] DHARMa.helpers_0.0.0.9000 DHARMa_0.4.6             
##  [5] brms_2.20.5               Rcpp_1.0.11              
##  [7] rethinking_2.13.2         glmmTMB_1.1.7            
##  [9] systemfonts_1.0.4         extrafont_0.18           
## [11] concaveman_1.1.0          ggforce_0.4.1            
## [13] ggdag_0.2.7               dagitty_0.3-1            
## [15] kableExtra_1.3.4          knitr_1.45               
## [17] DT_0.30                   patchwork_1.1.2          
## [19] data.table_1.14.6         see_0.7.5.5              
## [21] report_0.5.7.4            parameters_0.20.3        
## [23] performance_0.10.3        modelbased_0.8.6.3       
## [25] insight_0.19.1.4          effectsize_0.8.3.6       
## [27] datawizard_0.7.1.1        correlation_0.8.4        
## [29] bayestestR_0.13.1         easystats_0.6.0.8        
## [31] ggsci_2.9                 lemon_0.4.6              
## [33] lubridate_1.9.2           forcats_1.0.0            
## [35] stringr_1.5.0             dplyr_1.1.2              
## [37] purrr_1.0.2               readr_2.1.4              
## [39] tidyr_1.3.0               tibble_3.2.1             
## [41] ggplot2_3.4.4             tidyverse_2.0.0          
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2           tidyselect_1.2.0     lme4_1.1-34         
##   [4] htmlwidgets_1.6.2    grid_4.2.2           munsell_0.5.0       
##   [7] codetools_0.2-18     miniUI_0.1.1.1       withr_2.5.2         
##  [10] Brobdingnag_1.2-9    colorspace_2.0-3     highr_0.10          
##  [13] rstudioapi_0.15.0    stats4_4.2.2         Rttf2pt1_1.3.12     
##  [16] bayesplot_1.10.0     labeling_0.4.3       emmeans_1.8.8       
##  [19] polyclip_1.10-4      farver_2.1.1         bridgesampling_1.1-2
##  [22] coda_0.19-4          vctrs_0.6.3          generics_0.1.3      
##  [25] TH.data_1.1-2        xfun_0.39            timechange_0.1.1    
##  [28] R6_2.5.1             markdown_1.11        cachem_1.0.8        
##  [31] promises_1.2.0.1     scales_1.2.1         multcomp_1.4-25     
##  [34] gtable_0.3.4         processx_3.8.0       tidygraph_1.2.2     
##  [37] sandwich_3.0-2       rlang_1.1.1          splines_4.2.2       
##  [40] extrafontdb_1.0      TMB_1.9.6            checkmate_2.1.0     
##  [43] inline_0.3.19        yaml_2.3.7           reshape2_1.4.4      
##  [46] abind_1.4-5          threejs_0.3.3        crosstalk_1.2.0     
##  [49] backports_1.4.1      httpuv_1.6.7         tensorA_0.36.2      
##  [52] tools_4.2.2          bookdown_0.35        ellipsis_0.3.2      
##  [55] jquerylib_0.1.4      posterior_1.5.0      plyr_1.8.8          
##  [58] base64enc_0.1-3      ps_1.7.2             prettyunits_1.2.0   
##  [61] zoo_1.8-11           magrittr_2.0.3       colourpicker_1.3.0  
##  [64] mvtnorm_1.2-3        matrixStats_0.63.0   hms_1.1.3           
##  [67] shinyjs_2.1.0        mime_0.12            evaluate_0.23       
##  [70] xtable_1.8-4         shinystan_2.6.0      gridExtra_2.3       
##  [73] shape_1.4.6          rstantools_2.3.1.1   compiler_4.2.2      
##  [76] V8_4.2.2             crayon_1.5.2         minqa_1.2.5         
##  [79] htmltools_0.5.4      later_1.3.0          tzdb_0.3.0          
##  [82] RcppParallel_5.1.6   tweenr_2.0.2         MASS_7.3-58.1       
##  [85] boot_1.3-28          Matrix_1.6-1         cli_3.6.1           
##  [88] igraph_1.3.5         pkgconfig_2.0.3      numDeriv_2016.8-1.1 
##  [91] xml2_1.3.5           dygraphs_1.1.1.6     svglite_2.1.1       
##  [94] QuickJSR_1.0.5       bslib_0.5.1          webshot_0.5.5       
##  [97] estimability_1.4.1   rvest_1.0.3          distributional_0.3.2
## [100] callr_3.7.3          digest_0.6.31        rmarkdown_2.25      
## [103] curl_4.3.3           shiny_1.7.5.1        gtools_3.9.4        
## [106] nloptr_2.0.3         lifecycle_1.0.4      nlme_3.1-160        
## [109] jsonlite_1.8.4       viridisLite_0.4.2    fansi_1.0.3         
## [112] pillar_1.9.0         lattice_0.20-45      loo_2.6.0           
## [115] fastmap_1.1.1        httr_1.4.7           pkgbuild_1.4.2      
## [118] survival_3.5-5       glue_1.6.2           xts_0.12.2          
## [121] shinythemes_1.2.0    stringi_1.7.12       sass_0.4.7
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. In Trends in Ecology and Evolution (No. 3; Vol. 24, pp. 127–135).
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400. https://doi.org/10.32614/RJ-2017-066
Chang, W. (2018). R graphics cookbook: Practical recipes for visualizing data. “O’Reilly Media, Inc.”
Dunn, P. K., & Smyth, G. K. (2018). Generalized linear models with examples in R. Springer New York.
Fox, G. A., Negrete-Yankelevich, S., & Sosa, V. J. (2015). Ecological statistics: Contemporary theory and application. Oxford University Press.
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press.
Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 2018(5).
McElreath, R. (2009). Statistical rethinking: A bayeasian course with example in r and stan. CRC Press.
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. “O’Reilly Media, Inc.”
Zuur, A. F. (2009). Mixed effects models and extensions in ecology with R. Springer.
大東健太郎. (2010). 線形モデルから一般化線形モデル(GLM)へ. 雑草研究, 55(4), 268–274.
松村優哉., 湯谷啓明., 紀ノ定保礼., & 前田和. (2021). RユーザのためのRstudio[実践]入門 tidyverseによるモダンな分析フローの世界 改訂2版. 技術評論社.
松浦健太郎. (2012). StanとRでベイズ統計モデリング. 共立出版.
松浦健太郎. (2016). StanとRでベイズ統計モデリング. 共立出版.
馬場真哉. (2015). 平均・分散から始める一般化線形モデル入門. プレアデス出版.
馬場真哉. (2019). RとStanではじめるベイズ統計モデリングによるデータ分析. 講談社.