実行環境

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Japanese_Japan.utf8  LC_CTYPE=Japanese_Japan.utf8   
## [3] LC_MONETARY=Japanese_Japan.utf8 LC_NUMERIC=C                   
## [5] LC_TIME=Japanese_Japan.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] patchwork_1.1.2    brms_2.18.0        Rcpp_1.0.9         DHARMa_0.4.6      
##  [5] statmod_1.5.0      glmmTMB_1.1.5      ggeffects_1.1.4    see_0.7.5.5       
##  [9] report_0.5.7.4     parameters_0.20.3  performance_0.10.3 modelbased_0.8.6.3
## [13] insight_0.19.1.4   effectsize_0.8.3.6 datawizard_0.7.1.1 correlation_0.8.4 
## [17] bayestestR_0.13.1  easystats_0.6.0.8  lme4_1.1-31        Matrix_1.5-1      
## [21] forcats_0.5.2      stringr_1.5.0      dplyr_1.0.10       purrr_1.0.0       
## [25] readr_2.1.3        tidyr_1.2.1        tibble_3.1.8       ggplot2_3.4.2     
## [29] tidyverse_1.3.2   
## 
## loaded via a namespace (and not attached):
##   [1] readxl_1.4.1         backports_1.4.1      plyr_1.8.8          
##   [4] igraph_1.3.5         TMB_1.9.1            splines_4.2.2       
##   [7] crosstalk_1.2.0      gap.datasets_0.0.5   inline_0.3.19       
##  [10] rstantools_2.2.0     digest_0.6.31        htmltools_0.5.4     
##  [13] fansi_1.0.3          magrittr_2.0.3       checkmate_2.1.0     
##  [16] googlesheets4_1.0.1  tzdb_0.3.0           modelr_0.1.10       
##  [19] RcppParallel_5.1.6   matrixStats_0.63.0   xts_0.12.2          
##  [22] timechange_0.1.1     prettyunits_1.1.1    colorspace_2.0-3    
##  [25] rvest_1.0.3          haven_2.5.1          xfun_0.36           
##  [28] callr_3.7.3          crayon_1.5.2         jsonlite_1.8.4      
##  [31] zoo_1.8-11           glue_1.6.2           gtable_0.3.3        
##  [34] gargle_1.2.1         emmeans_1.8.3        V8_4.2.2            
##  [37] distributional_0.3.1 pkgbuild_1.4.0       rstan_2.26.13       
##  [40] abind_1.4-5          scales_1.2.1         mvtnorm_1.1-3       
##  [43] DBI_1.1.3            miniUI_0.1.1.1       xtable_1.8-4        
##  [46] StanHeaders_2.26.13  stats4_4.2.2         DT_0.27             
##  [49] htmlwidgets_1.6.1    httr_1.4.4           threejs_0.3.3       
##  [52] posterior_1.3.1      ellipsis_0.3.2       pkgconfig_2.0.3     
##  [55] loo_2.5.1            farver_2.1.1         sass_0.4.5          
##  [58] dbplyr_2.2.1         utf8_1.2.2           labeling_0.4.2      
##  [61] tidyselect_1.2.0     rlang_1.1.1          reshape2_1.4.4      
##  [64] later_1.3.0          munsell_0.5.0        cellranger_1.1.0    
##  [67] tools_4.2.2          cachem_1.0.6         cli_3.6.0           
##  [70] generics_0.1.3       broom_1.0.2          evaluate_0.20       
##  [73] fastmap_1.1.0        yaml_2.3.7           processx_3.8.0      
##  [76] knitr_1.42           fs_1.5.2             nlme_3.1-160        
##  [79] mime_0.12            xml2_1.3.3           gap_1.4-2           
##  [82] compiler_4.2.2       bayesplot_1.10.0     shinythemes_1.2.0   
##  [85] rstudioapi_0.14      png_0.1-8            curl_4.3.3          
##  [88] reprex_2.0.2         bslib_0.4.2          stringi_1.7.8       
##  [91] highr_0.10           ps_1.7.2             Brobdingnag_1.2-9   
##  [94] lattice_0.20-45      nloptr_2.0.3         markdown_1.4        
##  [97] shinyjs_2.1.0        tensorA_0.36.2       vctrs_0.5.1         
## [100] pillar_1.9.0         lifecycle_1.0.3      jquerylib_0.1.4     
## [103] bridgesampling_1.1-2 estimability_1.4.1   httpuv_1.6.7        
## [106] R6_2.5.1             bookdown_0.31        promises_1.2.0.1    
## [109] gridExtra_2.3        codetools_0.2-18     boot_1.3-28         
## [112] colourpicker_1.2.0   MASS_7.3-58.1        gtools_3.9.4        
## [115] assertthat_0.2.1     withr_2.5.0          shinystan_2.6.0     
## [118] parallel_4.2.2       hms_1.1.2            grid_4.2.2          
## [121] coda_0.19-4          minqa_1.2.5          rmarkdown_2.20      
## [124] googledrive_2.0.0    numDeriv_2016.8-1.1  shiny_1.7.4         
## [127] lubridate_1.9.0      base64enc_0.1-3      dygraphs_1.1.1.6

References

Chang, W. (2018). R graphics cookbook: Practical recipes for visualizing data. “O’Reilly Media, Inc.”
Fox, G., & Sosa, V. (2015). Mixture models for overdispersed data. In Ecological statictics: Contemporary theory and application (pp. 284–308). Oxford University Press.
Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 2018(5).
Wickham, H., & Grolemund, G. (2016). R for data science: Import, tidy, transform, visualize, and model data. “O’Reilly Media, Inc.”
松村優哉., 湯谷啓明., 紀ノ定保礼., & 前田和. (2021). RユーザのためのRstudio[実践]入門 tidyverseによるモダンな分析フローの世界 改訂2版. 技術評論社.
松浦健太郎. (2016). StanとRでベイズ統計モデリング. 共立出版.
粕谷英一. (2012). 一般化線形モデル. 共立出版.